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Abstract 

 
Quantum memory-driven computing on the 

classical computers for design and test of black-box 
functionality is considered. A method for synthesis and 
minimization test for the black-box functionality, based 
on a qubit derivative matrix and sequencer for 
searching a quasi-optimum coverage, is proposed. 
Examples of quantum memory-driven design and test 
minimization of the Schneider logic circuit are 
presented. An architecture and algorithm for parallel 
search of a quasi-minimal set of test vectors based on 
the logical structure is developed. The technological 
advantages of the qubit coverage leverage for 
increasing the speed of performance due to the parallel 
solution of the test synthesis and analysis for single 
stuck-at-faults of external and internal variables are 
shown. 
 
1. Introduction 
 

Quantum computing is currently the most important 
area of research, which is engaged by all the leading 
companies on the planet related to the IT industry (d-
wave, IBM, Google, NASA, Acronis). Naturally, the 
activity of these companies is primarily aimed at 
creating a prototype of a quantum computer of the 
future, capable of solving NP-complete tasks within an 

acceptable time. It is understandable that academic 
scientists are increasingly engaged in research in the 
field of creating new mathematical theories, methods 
and algorithms oriented to the parallel solution of 
actual problems in the metrics of quantum computers. 
Otherwise, there may be a situation when naked 
quantum computers appear on the market, for which 
there will be no software or cloud applications. A vivid 
example of the quantum-oriented problems is the 
search for optimal test coverage for all stuck-at-faults 
for digital system on chip. For more than 100 years, the 
Cantor algebra has existed in discrete mathematics and 
Hasse's isomorphic structure, which is a model of 
quantum processing based on the properties of 
superposition and entanglement for the efficient, and 
parallel solution of combinatorial problems [1-3]. 

 
2. Quantum Hasse Sequencer of the Quasi-
Optimal Coverage 
 

The quantum computing architecture is proposed 
for a significant increase in the performance to solve 
discrete optimization problems [1-5] in the field 
Design and Test. Hardware-oriented models of parallel 
taking the Boolean (set of all subsets) for the 
universum of n-primitives are described. Hasse-
sequencer [4-5] is focused on solving the problems of 
coverage, minimization tests, logic functions, data 
compression, synthesis, and analysis of digital systems. 
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The purpose of creation the Hasse sequencer is to 
significantly reduce the time for solving optimization 
problems by parallel computing vector logical 
operations over the set of all subsets of primitive 
components by increasing the memory for storing 
matrix data. 

The objectives: 1) Definition of data structures for 
taking a Boolean when solving the problem of 
coverage columns of a matrix M = Mij , i =1,m; j=1,n  

by 1-unit row values. In particular, for m = n = 8, it is 
necessary to execute in parallel a logical operation over 
256 variants of all possible combinations of the matrix 
rows that make up the Boolean. The sequencer 
instruction system includes logical operations (and, or, 
xor) over vectors with m-lenth. 2) Development of 
Hasse sequencer architecture for parallel computation 
of 2n −1  combination’s variants aimed at the optimal 
solution of the NP-complete coverage problem. 3) 
Implementation of the Hasse sequencer prototype on 
programmable logic and verification of the hardware 
solution by examples of minimizing logic functions. 

As an example, it is proposed to solve the problem 
of search the optimal 1-unit coverage of all columns by 
the minimum number of rows of the matrix M: 

M 1 2 3 4 5 6 7 8
a 1 . . . . 1 . .
b . . 1 . . . 1 .
c 1 . . . 1 . 1 .
d . 1 . 1 . . . 1
e . 1 . . 1 . . .
f 1 . 1 . . 1 1 .
g . 1 . 1 . . . 1
h . . 1 . 1 . . .

 

The task solution is the search that contains 255 
combinations. The minimum number of primitive rows 
that form the coverage is the optimal solution. The 
Hasse diagram [2-4] is compromise architecture with 
respect to time and memory. It leverages the previously 
obtained result to create a more complex superposition 
of solutions. For each coverage table containing n 
lines, it is necessary to generate an own Hasse 
sequencer for an almost parallel solution of the NP-
complete problem. For instance, the four rows of the 
coverage table create the structure of the Hasse 
sequencer shown in Fig. 1. 

The Hasse sequencer corresponds to the structural 
description of a closed alphabet formed by a Boolean 
on a universe of four primitives that represent all 
possible binary transitions of a logical variable in two 
automaton cycles [2]: B*(Y)={Q=(00), E=(01), 
H=(10), J=(11), O={Q, H}, I={E,J}, A={Q,E}, 
B={H,J}, S={Q,J}, P={E,H}, C={E,H,J}, F={Q,H,J}, 
L={Q,E,J}, V={Q,E,H}, Y={Q,E,H,J}, U =∅ .  

The optimal solutions of the coverage problem for 
the matrix M, which generates 255 variants of possible 

combinations, are represented by rows in the DNF 
form: C = fgh∨efg∨cdf   

 
Fig. 1. Hasse-sequencer of the quantum 

computing 
 
The control algorithm of the computational process 

for a quantum Hasse structure by an upward analysis of 
the graph vertices is based on the sequential execution 
of the following steps: 

1. Entering the rows of the matrix in the first level 

registers Li
1 = Pi  with the subsequent analysis of the 

coverage’ quality where each matrix row (primitive) is 
evaluated by a bit: 1 means coverage presence, 0 
means no coverage. If one of the primitives creates the 

coverage  ∧
j=1

m
Lij
1 =1 , the Hasse structure analysis ends. 

Otherwise, the transition (r = r + 1) to the next higher 
level of the graph is performed: 

Li
1 = Pi→ ∧

j=1

m
Lij
1 =

0→ n = n+1;
1→ end.{  

2. Initiate a command for processing to the next 
level. Consecutive execution of vector (matrix) 

operations or, and: Li
r = Lij

r−1 ∨
j=1

m
Ltj
r−1 , ∧

j=1

m
Lij
r =1  for 

analysis of the coverage, obtaining by superposition of 
r-level primitives. Here t =1,m, i =1,m, r =1,n ; n is the 
number of rows in the coverage table; m is the number 
of columns in it. If there is a superposition at the 
current level, creating a coverage indicator 1, the 
processing of all subsequent Hasse levels is not 
performed. Otherwise, the transition to the next higher 
level of the structure is performed: 

Li
r = Lij

r−1 ∨
j=1

m
Ltj
r−1→ ∧

j=1

m
Lij
r = 0→ r = r +1;

1→ end.{  

Every operational graph vertex consists of two 
register variables, which significantly reduces the 
hardware costs when implementing the Hasse 



sequencer. The number of clock cycles for processing 
the Hasse structure is at worst equal to n. It can also 
create an algorithm for search the optimal coverage by 
up-bottom analysis of the graph vertices. In this case, 
when the complete coverage in the current level is 
found, another descent along the structure is necessary 
to ensure that there is no complete coverage on the 
lower adjacent level. In this case, the solution obtained 
is optimal. Otherwise, it is necessary to perform the 
descent to a level where, the more lower, adjacent level 
will not contain a complete coverage. The vertices of 
the processor structure can have more than one register 
logical operation. Then the simplest command decoder 
to activate the logical operations: and, or, xor, not, is 
created. 

Thus, the advantages of a quantum Hasse sequencer 
are the leverage of two-input elements for vector 
logical operations (and, or, xor), which makes it 
possible to significantly reduce hardware costs through 
the use of serial-parallel computations and a slight 
increase in the processing time of all the graph 
vertices. For each vertex, the coverage criterion is 
calculated, as the presence of all 1-units in the 
coordinates of the result vector. If the criterion is 1, 
then all other calculations are not performed, since the 
Hasse sequencer is a strictly hierarchical structure with 
respect to the number of superposition in each tier. 
This means that the best solution is at the lower level 
of the graph hierarchy. Variants of the same level are 
equivalent in cost of implementation; therefore the first 

coverage obtained (Q = qi = n
i=1

n
∑ ) is the best solution, 

which implies stopping the Hasse-structure processing 
algorithm. The serial-parallel analysis cycle of the 
Hasse graph vertices is determined by the number of 
levels of the hierarchy or by the number of primitive 
rows in the coverage table multiplied by the time of 
analysis of one vertex: T = log2 2

n × t = t× n . In this 
case, the length m of the row of the coverage table 
does not affect the speed. Vertex analysis includes two 
instructions: logical (and, or, xor) and the operation of 
calculating the coverage criterion in the form of a 
scalar by applying the and-operation to all bits of the 
result vector: 

mir, j =Mi, j∨Mr, j, ( j=1, n;{i ≠ r} =1,m;);

mir
s =∧mir, j =∧(Mi, j∨Mr, j)

 

Hardware costs for the implementation of the Hasse 
sequencer depend on the total number of graph vertices 
and on the number of bits in the row of the coverage 
table: H = 2n × k ×m , where k is the hardware 
implementation parameter of the binary vector logic 

operation and the criteria for calculating the quality of 
coverage. 

Thus, the high speed of solving the coverage 
problem is achieved by significant increase hardware 

in 2n × k ×m / k ×m× n = 2n / n  times, in comparison 
with the sequential processing of graph vertices. The 
Hasse sequencer provides the optimum between a 
completely parallel structure of computing processes, 
where the hardware cost is determined by the number 
of primitives at each node  H = k ×m× n× 2n , and the 
purely sequential computation structure, where the 

processing time of the Hasse graph is equal T = t× 2n   
with minimal hardware costs  H*= k ×m× n . Reducing 
the hardware complexity of the Hasse sequencer in 
comparison with the parallel processing of the graph is 

QH = k ×m× n× 2n / k ×m× 2n = n . Reducing the time 
of analysis of the Hasse structure vertices, due to 
hardware redundancy, compared with a purely 
sequential processing of the graph vertices has the 
following estimate: 

QT = t× 2
n

t× n
=
2n

n
.  

The hardware-oriented Hasse architecture of the 
parallel computation of Boolean on the universum of n 
primitive rows is designed to solve the coverage 
problems, to minimize logic functions, to compress 
data, to synthesize and analyze digital systems. A 
prototype of a quantum Hasse structure implemented in 
software for the optimal solution of the coverage 
problem is used for the test minimization. 

 
3. Method for synthesis a quasi-optimum 
test 

The method is an integral part of the minimal test 
synthesis of digital circuits. It is based on the leverage 
of register parallel operations on the hardware-oriented 
data structures, which represent a qubit derivative 
matrix for black-box functionality. The architecture of 
the matrix sequencer for implementing the method is 
represented by the components shown in Fig. 2. 

 
Fig. 2. The sequencer architecture for the 

quasi-optimal test synthesis 



The analytical model and computational procedures 
for the test minimization using the qubit coverage 
matrix are the following: 

A =<Q,Q',Q0,Q1,T,q0,q1, h0, h1, p >,
1) Q = (Q1,Q2,...,Qi,...,Q2n );

2) Q' = [Q'ij], i =1,2
n, j=1,n;

3) Q0,= (Q1
0,Q2

0,...,Q j
0,...,Qn

0);

4) Q1,= (Q1
1,Q2

1 ,...,Q j
1,...,Qn

1 );
5) T = (T1,T2,..., Ti,..., T2n );

6) q0 = (Q1
0 ∧Q2

0 ∧...∧Qj
0 ∧...∧Qn

0);

7) q1 = (Q1
1∧Q2

1 ∧...∧Qj
1∧...∧Qn

1 );

8) h0 =1↔ q0 =1; 
9) h1 =1↔ q1 =1;

10) p = ∨
j=1

n
[(Q j

0(1)∧Qji
' )⊕Qji

' ].

 

Here are presented: 1) Qubit coverage of the black 
box functionality; 2) The matrix of qubit derivatives 
with respect to all variables; 3) Buffer accumulation 
register for indicating the process of obtaining a quasi-
optimum coverage with respect to the zero Q-vector 
coordinates; 4) Buffer accumulation register for 
indicating the process of obtaining a quasi-optimum 
coverage by 1-unit coordinates of the Q-vector; 5) A 
qubit test vector, where test vectors are marked with 1-
unit coordinates, which must be submitted to the Unit 
Under Test; 6) Indicator of the achievement of a quasi-
optimum coverage with respect to the zero coordinates 
of the Q-vector; 7) Indicator of the achievement of a 
quasi-optimal coverage with respect to the 1-unit 
coordinates of the Q-vector; 8) The switch of the 
column analysis of the derivative matrix with respect 
to the zero coordinates of the Q-vector; 9) The switch 
of the column analysis of the derivative matrix with 
respect to the 1-unit coordinates of the Q-vector; 10) 
The coverage degree index of rows of the qubit 
derivatives matrix for the column under consideration. 
If the pointer is zero (there is no increment), then the 
column from the {0,1}-subsets of the matrix is not 
included in the test:  

p = ∨
i=1

n
[(Q0(1)∧Qi

' )⊕Qi
' ].  

The structural scheme of the quasi-optimal test 
synthesis algorithm based on splitting the matrix of 
derivatives has two symmetric branches, oriented to 
the analysis of the {0,1}-subsets of columns, 
respectively, Fig. 3. The basic idea of obtaining a 
quasi-optimal test is to find the minimum number of 
columns in the {0,1}-subsets of a qubit derivative 

matrix, cover all the rows or functionality variables 
with their 1-unit coordinates. In this case, if the next 
column does not add detection properties to the vectors 
previously included in the test, then it is excluded from 
the list. 

 
Fig. 3. Quasi-optimal test algorithm 

 
The next step is the leverage of the described 

procedures for the quasi-minimal test synthesis of the 
Schneider logical example, presented in Fig. 4. 

 
Fig. 4. Schneider logic circuit for the test 

synthesis 
 

The qubit coverage of the digital circuit is 
represented by a vector (100000000000001), over 



which four qubit derivatives were obtained. 
Essentially, that for each variable the qubit derivative 
is composed of pairs of 1-unit coordinates in the 
vector. In aggregate, each pair of performing or-
operation gives a functional term of three input 
variables, where there is no fourth line on which the 
derivative is taken. For instance, the derivative 
Q'(X1) =11  at the address coordinates of the input 
variables 0000 and 1000 means the activation 
conditions of 000 for the first variable. Thus, the qubit 
derivative, as a pair of input vectors, is a test for single 
stuck-at-faults detection of the input variable under 
consideration. Naturally, there can be several pairs for 
each input line. In this case, their leverage is related to 
detecting the internal variables of the functionality. 
The following table shows the qubit coverage, Boolean 
qubit derivatives, and the states of the input variables 
that correspond to the values of the qubit coverage 
coordinates (for the good visual perception of the data 
picture, the zero states of the truth table and the 
derivative matrix coordinates are marked by points): 

X1 . . . . . . . . 1 1 1 1 1 1 1 1
X2 . . . . 1 1 1 1 . . . . 1 1 1 1
X3 . . 1 1 . . 1 1 . . 1 1 . . 1 1
X4 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
Q 1 . . . . . . . . . . . . . . 1

Q'(X1) 1 . . . . . . 1 1 . . . . . . 1
Q'(X2) 1 . . . 1 . . . . . . 1 . . . 1
Q'(X3) 1 . 1 . . . . . . . . . . 1 . 1
Q'(X4) 1 1 . . . . . . . . . . . . 1 1
Test = 1 1 1 . 1 . . 1 1 . . 1 . 1 1 1
Tmin = 1 1 . . . . . 1 1 . . . . . 1 1

 

The result of performing the or-operation on the 
qubit derivative vectors contains a test with 10 input 
vectors T = (1110100110010111). In general, the 
matrix of qubit derivatives with its 1-unit values 
creates a complete, but overhead test for detection all 
single stuck-at-faults of external and internal variables. 
Since it, by pairing input vectors, activates all logical 
paths from the input lines to the outputs of the digital 
black box functionality. Sensitivity, as a property of 
digital functionality, is the ratio of the number of 1-unit 
coordinates in the qubit derivative matrix to the total 
number of coordinates. For instance, the sensitivity of 
the Schneider circuit is 0.25. 

The procedure for the test minimization, taking into 
account the structure of the circuit, by finding the 
quasi-minimal coverage of all input variables by {0,1}-
subsets of the qubit derivatives, generates the six test 
vectors represented in the following table (the points 
indicate the coordinates with undetected faults): 

Test 1 2 3 4 5 6 7 8 9 10 11 12 FD FC
000011100001 1 1 1 1 0 0 0 1 1 1 1 0 50 50
000111000010 . . . 0 . . 1 . . . 0 1 16 66
011100001000 . . . . . 1 . . 0 . . 1 12 75
100001110000 0 . . . 1 . . 0 . . . 1 16 87
111000000100 . . . . . 1 . . . 0 . 1 12 91
111100000001 0 0 0 0 . . . 1 1 1 1 0 37 100

∪= X X X X X X X X X X X X  
Thus, the minimal test for the Schneider logic 

contains only six input sequences that detect 100 
percent of single stuck-at-faults for the input, internal 
and output lines of the device. The density of the faults 
detected on a given test is defined as the ratio of the 
defects being detected to the total number of the fault 
detection table coordinates. For the Schneider circuit, 
the test has a fault density of 35/72 = 0.49. 

The experiments performed to minimize tests on 16 
fragments of digital devices (4-10 input variables) 
indicate the following: 1) In 25 percent of cases 
optimal tests were obtained. 2) In 70 percent of the 
cases, the tests differed from the optimal ones by no 
more than 25 percent. 3) In 5 percent of the cases, the 
tests were close to the exhaustive number of input 
sequences. 4) The computational complexity of the 
proposed qubit method for synthesis the minimum test 
for logical functionality from n variables is determined 
by the estimate forming the time costs for taking the 
qubit derivatives and the test minimization: 

E = 2n+ 2n2 = 2n(n+1).  
Thus, the method of test synthesis based on the 

leverage qubit derivatives allows the generation of 
input vectors detecting all single stuck-at-faults of the 
input and internal lines. However, for the synthesis of 
the minimum test, it is necessary to use the structure of 
a digital device. 

4. Conclusion 
The innovation of the results is as follows: 
1) The Hasse sequencer, focused on the parallel 

solution of quasi-optimal search problems, in particular 
to minimize the test, detecting single stuck-at-faults in 
digital black-box functionality. 

2) The method, algorithm and sequencer structure 
for synthesis and minimization tests of black-box 
functionality is proposed, using qubit derivative matrix 
to find the quasi-optimum coverage. 3) Experiments 
were carried out on the fragments of digital circuits, 
which showed, the practical significance and high 
performance of the proposed architecture and the 
method of synthesis a quasi-minimal test for black-box 
logical functionality. 4) Further research will be 
directed to the creation a family of intelligent 
algorithms for the test synthesis, simulation and fault 
diagnosis leveraging the qubit coverage and derivatives 
apparatus. 
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