
Quantum Sequencer for the Minimal Test Synthesis of Black-box
Functionality

Vladimir Hahanov
Kharkov National University of

Radioelectronics, Ukraine
hahanov@icloud.com

Svetlana Chumachenko

Kharkov National University of
Radioelectronics, Ukraine

svetachumachenko@icloud.com

Igor Iemelianov
Kharkov National University of

Radioelectronics, Ukraine
apot@kture.kharkov.ua

Ivan Hahanov

Kharkov National University of
Radioelectronics, Ukraine
ivanhahanov@icloud.com

Irina Hahanova

Kharkov National University of Radioelectronics, Ukraine
hahanova@mail.ru

Abstract

Quantum memory-driven computing on the

classical computers for design and test of black-box
functionality is considered. A method for synthesis and
minimization test for the black-box functionality, based
on a qubit derivative matrix and sequencer for
searching a quasi-optimum coverage, is proposed.
Examples of quantum memory-driven design and test
minimization of the Schneider logic circuit are
presented. An architecture and algorithm for parallel
search of a quasi-minimal set of test vectors based on
the logical structure is developed. The technological
advantages of the qubit coverage leverage for
increasing the speed of performance due to the parallel
solution of the test synthesis and analysis for single
stuck-at-faults of external and internal variables are
shown.

1. Introduction

Quantum computing is currently the most important
area of research, which is engaged by all the leading
companies on the planet related to the IT industry (d-
wave, IBM, Google, NASA, Acronis). Naturally, the
activity of these companies is primarily aimed at
creating a prototype of a quantum computer of the
future, capable of solving NP-complete tasks within an

acceptable time. It is understandable that academic
scientists are increasingly engaged in research in the
field of creating new mathematical theories, methods
and algorithms oriented to the parallel solution of
actual problems in the metrics of quantum computers.
Otherwise, there may be a situation when naked
quantum computers appear on the market, for which
there will be no software or cloud applications. A vivid
example of the quantum-oriented problems is the
search for optimal test coverage for all stuck-at-faults
for digital system on chip. For more than 100 years, the
Cantor algebra has existed in discrete mathematics and
Hasse's isomorphic structure, which is a model of
quantum processing based on the properties of
superposition and entanglement for the efficient, and
parallel solution of combinatorial problems [1-3].

2. Quantum Hasse Sequencer of the Quasi-
Optimal Coverage

The quantum computing architecture is proposed
for a significant increase in the performance to solve
discrete optimization problems [1-5] in the field
Design and Test. Hardware-oriented models of parallel
taking the Boolean (set of all subsets) for the
universum of n-primitives are described. Hasse-
sequencer [4-5] is focused on solving the problems of
coverage, minimization tests, logic functions, data
compression, synthesis, and analysis of digital systems.

978-1-5386-5710-2/18/$31.00 ©2018 IEEE

The purpose of creation the Hasse sequencer is to
significantly reduce the time for solving optimization
problems by parallel computing vector logical
operations over the set of all subsets of primitive
components by increasing the memory for storing
matrix data.

The objectives: 1) Definition of data structures for
taking a Boolean when solving the problem of
coverage columns of a matrix M = Mij , i =1,m; j=1,n

by 1-unit row values. In particular, for m = n = 8, it is
necessary to execute in parallel a logical operation over
256 variants of all possible combinations of the matrix
rows that make up the Boolean. The sequencer
instruction system includes logical operations (and, or,
xor) over vectors with m-lenth. 2) Development of
Hasse sequencer architecture for parallel computation
of 2n −1 combination’s variants aimed at the optimal
solution of the NP-complete coverage problem. 3)
Implementation of the Hasse sequencer prototype on
programmable logic and verification of the hardware
solution by examples of minimizing logic functions.

As an example, it is proposed to solve the problem
of search the optimal 1-unit coverage of all columns by
the minimum number of rows of the matrix M:

M 1 2 3 4 5 6 7 8
a 1 1 . .
b . . 1 . . . 1 .
c 1 . . . 1 . 1 .
d . 1 . 1 . . . 1
e . 1 . . 1 . . .
f 1 . 1 . . 1 1 .
g . 1 . 1 . . . 1
h . . 1 . 1 . . .

The task solution is the search that contains 255
combinations. The minimum number of primitive rows
that form the coverage is the optimal solution. The
Hasse diagram [2-4] is compromise architecture with
respect to time and memory. It leverages the previously
obtained result to create a more complex superposition
of solutions. For each coverage table containing n
lines, it is necessary to generate an own Hasse
sequencer for an almost parallel solution of the NP-
complete problem. For instance, the four rows of the
coverage table create the structure of the Hasse
sequencer shown in Fig. 1.

The Hasse sequencer corresponds to the structural
description of a closed alphabet formed by a Boolean
on a universe of four primitives that represent all
possible binary transitions of a logical variable in two
automaton cycles [2]: B*(Y)={Q=(00), E=(01),
H=(10), J=(11), O={Q, H}, I={E,J}, A={Q,E},
B={H,J}, S={Q,J}, P={E,H}, C={E,H,J}, F={Q,H,J},
L={Q,E,J}, V={Q,E,H}, Y={Q,E,H,J}, U =∅ .

The optimal solutions of the coverage problem for
the matrix M, which generates 255 variants of possible

combinations, are represented by rows in the DNF
form: C = fgh∨efg∨cdf

Fig. 1. Hasse-sequencer of the quantum

computing

The control algorithm of the computational process

for a quantum Hasse structure by an upward analysis of
the graph vertices is based on the sequential execution
of the following steps:

1. Entering the rows of the matrix in the first level

registers Li
1 = Pi with the subsequent analysis of the

coverage’ quality where each matrix row (primitive) is
evaluated by a bit: 1 means coverage presence, 0
means no coverage. If one of the primitives creates the

coverage ∧
j=1

m
Lij
1 =1 , the Hasse structure analysis ends.

Otherwise, the transition (r = r + 1) to the next higher
level of the graph is performed:

Li
1 = Pi→ ∧

j=1

m
Lij
1 =

0→ n = n+1;
1→ end.{

2. Initiate a command for processing to the next
level. Consecutive execution of vector (matrix)

operations or, and: Li
r = Lij

r−1 ∨
j=1

m
Ltj
r−1 , ∧

j=1

m
Lij
r =1 for

analysis of the coverage, obtaining by superposition of
r-level primitives. Here t =1,m, i =1,m, r =1,n ; n is the
number of rows in the coverage table; m is the number
of columns in it. If there is a superposition at the
current level, creating a coverage indicator 1, the
processing of all subsequent Hasse levels is not
performed. Otherwise, the transition to the next higher
level of the structure is performed:

Li
r = Lij

r−1 ∨
j=1

m
Ltj
r−1→ ∧

j=1

m
Lij
r = 0→ r = r +1;

1→ end.{

Every operational graph vertex consists of two
register variables, which significantly reduces the
hardware costs when implementing the Hasse

sequencer. The number of clock cycles for processing
the Hasse structure is at worst equal to n. It can also
create an algorithm for search the optimal coverage by
up-bottom analysis of the graph vertices. In this case,
when the complete coverage in the current level is
found, another descent along the structure is necessary
to ensure that there is no complete coverage on the
lower adjacent level. In this case, the solution obtained
is optimal. Otherwise, it is necessary to perform the
descent to a level where, the more lower, adjacent level
will not contain a complete coverage. The vertices of
the processor structure can have more than one register
logical operation. Then the simplest command decoder
to activate the logical operations: and, or, xor, not, is
created.

Thus, the advantages of a quantum Hasse sequencer
are the leverage of two-input elements for vector
logical operations (and, or, xor), which makes it
possible to significantly reduce hardware costs through
the use of serial-parallel computations and a slight
increase in the processing time of all the graph
vertices. For each vertex, the coverage criterion is
calculated, as the presence of all 1-units in the
coordinates of the result vector. If the criterion is 1,
then all other calculations are not performed, since the
Hasse sequencer is a strictly hierarchical structure with
respect to the number of superposition in each tier.
This means that the best solution is at the lower level
of the graph hierarchy. Variants of the same level are
equivalent in cost of implementation; therefore the first

coverage obtained (Q = qi = n
i=1

n
∑) is the best solution,

which implies stopping the Hasse-structure processing
algorithm. The serial-parallel analysis cycle of the
Hasse graph vertices is determined by the number of
levels of the hierarchy or by the number of primitive
rows in the coverage table multiplied by the time of
analysis of one vertex: T = log2 2

n × t = t× n . In this
case, the length m of the row of the coverage table
does not affect the speed. Vertex analysis includes two
instructions: logical (and, or, xor) and the operation of
calculating the coverage criterion in the form of a
scalar by applying the and-operation to all bits of the
result vector:

mir, j =Mi, j∨Mr, j, (j=1, n;{i ≠ r} =1,m;);

mir
s =∧mir, j =∧(Mi, j∨Mr, j)

Hardware costs for the implementation of the Hasse
sequencer depend on the total number of graph vertices
and on the number of bits in the row of the coverage
table: H = 2n × k ×m , where k is the hardware
implementation parameter of the binary vector logic

operation and the criteria for calculating the quality of
coverage.

Thus, the high speed of solving the coverage
problem is achieved by significant increase hardware

in 2n × k ×m / k ×m× n = 2n / n times, in comparison
with the sequential processing of graph vertices. The
Hasse sequencer provides the optimum between a
completely parallel structure of computing processes,
where the hardware cost is determined by the number
of primitives at each node H = k ×m× n× 2n , and the
purely sequential computation structure, where the

processing time of the Hasse graph is equal T = t× 2n
with minimal hardware costs H*= k ×m× n . Reducing
the hardware complexity of the Hasse sequencer in
comparison with the parallel processing of the graph is

QH = k ×m× n× 2n / k ×m× 2n = n . Reducing the time
of analysis of the Hasse structure vertices, due to
hardware redundancy, compared with a purely
sequential processing of the graph vertices has the
following estimate:

QT = t× 2
n

t× n
=
2n

n
.

The hardware-oriented Hasse architecture of the
parallel computation of Boolean on the universum of n
primitive rows is designed to solve the coverage
problems, to minimize logic functions, to compress
data, to synthesize and analyze digital systems. A
prototype of a quantum Hasse structure implemented in
software for the optimal solution of the coverage
problem is used for the test minimization.

3. Method for synthesis a quasi-optimum
test

The method is an integral part of the minimal test
synthesis of digital circuits. It is based on the leverage
of register parallel operations on the hardware-oriented
data structures, which represent a qubit derivative
matrix for black-box functionality. The architecture of
the matrix sequencer for implementing the method is
represented by the components shown in Fig. 2.

Fig. 2. The sequencer architecture for the

quasi-optimal test synthesis

The analytical model and computational procedures
for the test minimization using the qubit coverage
matrix are the following:

A =<Q,Q',Q0,Q1,T,q0,q1, h0, h1, p >,
1) Q = (Q1,Q2,...,Qi,...,Q2n);

2) Q' = [Q'ij], i =1,2
n, j=1,n;

3) Q0,= (Q1
0,Q2

0,...,Q j
0,...,Qn

0);

4) Q1,= (Q1
1,Q2

1 ,...,Q j
1,...,Qn

1);
5) T = (T1,T2,..., Ti,..., T2n);

6) q0 = (Q1
0 ∧Q2

0 ∧...∧Qj
0 ∧...∧Qn

0);

7) q1 = (Q1
1∧Q2

1 ∧...∧Qj
1∧...∧Qn

1);

8) h0 =1↔ q0 =1;
9) h1 =1↔ q1 =1;

10) p = ∨
j=1

n
[(Q j

0(1)∧Qji
')⊕Qji

'].

Here are presented: 1) Qubit coverage of the black
box functionality; 2) The matrix of qubit derivatives
with respect to all variables; 3) Buffer accumulation
register for indicating the process of obtaining a quasi-
optimum coverage with respect to the zero Q-vector
coordinates; 4) Buffer accumulation register for
indicating the process of obtaining a quasi-optimum
coverage by 1-unit coordinates of the Q-vector; 5) A
qubit test vector, where test vectors are marked with 1-
unit coordinates, which must be submitted to the Unit
Under Test; 6) Indicator of the achievement of a quasi-
optimum coverage with respect to the zero coordinates
of the Q-vector; 7) Indicator of the achievement of a
quasi-optimal coverage with respect to the 1-unit
coordinates of the Q-vector; 8) The switch of the
column analysis of the derivative matrix with respect
to the zero coordinates of the Q-vector; 9) The switch
of the column analysis of the derivative matrix with
respect to the 1-unit coordinates of the Q-vector; 10)
The coverage degree index of rows of the qubit
derivatives matrix for the column under consideration.
If the pointer is zero (there is no increment), then the
column from the {0,1}-subsets of the matrix is not
included in the test:

p = ∨
i=1

n
[(Q0(1)∧Qi

')⊕Qi
'].

The structural scheme of the quasi-optimal test
synthesis algorithm based on splitting the matrix of
derivatives has two symmetric branches, oriented to
the analysis of the {0,1}-subsets of columns,
respectively, Fig. 3. The basic idea of obtaining a
quasi-optimal test is to find the minimum number of
columns in the {0,1}-subsets of a qubit derivative

matrix, cover all the rows or functionality variables
with their 1-unit coordinates. In this case, if the next
column does not add detection properties to the vectors
previously included in the test, then it is excluded from
the list.

Fig. 3. Quasi-optimal test algorithm

The next step is the leverage of the described

procedures for the quasi-minimal test synthesis of the
Schneider logical example, presented in Fig. 4.

Fig. 4. Schneider logic circuit for the test

synthesis

The qubit coverage of the digital circuit is
represented by a vector (100000000000001), over

which four qubit derivatives were obtained.
Essentially, that for each variable the qubit derivative
is composed of pairs of 1-unit coordinates in the
vector. In aggregate, each pair of performing or-
operation gives a functional term of three input
variables, where there is no fourth line on which the
derivative is taken. For instance, the derivative
Q'(X1) =11 at the address coordinates of the input
variables 0000 and 1000 means the activation
conditions of 000 for the first variable. Thus, the qubit
derivative, as a pair of input vectors, is a test for single
stuck-at-faults detection of the input variable under
consideration. Naturally, there can be several pairs for
each input line. In this case, their leverage is related to
detecting the internal variables of the functionality.
The following table shows the qubit coverage, Boolean
qubit derivatives, and the states of the input variables
that correspond to the values of the qubit coverage
coordinates (for the good visual perception of the data
picture, the zero states of the truth table and the
derivative matrix coordinates are marked by points):

X1 1 1 1 1 1 1 1 1
X2 1 1 1 1 1 1 1 1
X3 . . 1 1 . . 1 1 . . 1 1 . . 1 1
X4 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
Q 1 1

Q'(X1) 1 1 1 1
Q'(X2) 1 . . . 1 1 . . . 1
Q'(X3) 1 . 1 1 . 1
Q'(X4) 1 1 1 1
Test = 1 1 1 . 1 . . 1 1 . . 1 . 1 1 1
Tmin = 1 1 1 1 1 1

The result of performing the or-operation on the
qubit derivative vectors contains a test with 10 input
vectors T = (1110100110010111). In general, the
matrix of qubit derivatives with its 1-unit values
creates a complete, but overhead test for detection all
single stuck-at-faults of external and internal variables.
Since it, by pairing input vectors, activates all logical
paths from the input lines to the outputs of the digital
black box functionality. Sensitivity, as a property of
digital functionality, is the ratio of the number of 1-unit
coordinates in the qubit derivative matrix to the total
number of coordinates. For instance, the sensitivity of
the Schneider circuit is 0.25.

The procedure for the test minimization, taking into
account the structure of the circuit, by finding the
quasi-minimal coverage of all input variables by {0,1}-
subsets of the qubit derivatives, generates the six test
vectors represented in the following table (the points
indicate the coordinates with undetected faults):

Test 1 2 3 4 5 6 7 8 9 10 11 12 FD FC
000011100001 1 1 1 1 0 0 0 1 1 1 1 0 50 50
000111000010 . . . 0 . . 1 . . . 0 1 16 66
011100001000 1 . . 0 . . 1 12 75
100001110000 0 . . . 1 . . 0 . . . 1 16 87
111000000100 1 . . . 0 . 1 12 91
111100000001 0 0 0 0 . . . 1 1 1 1 0 37 100

∪= X X X X X X X X X X X X
Thus, the minimal test for the Schneider logic

contains only six input sequences that detect 100
percent of single stuck-at-faults for the input, internal
and output lines of the device. The density of the faults
detected on a given test is defined as the ratio of the
defects being detected to the total number of the fault
detection table coordinates. For the Schneider circuit,
the test has a fault density of 35/72 = 0.49.

The experiments performed to minimize tests on 16
fragments of digital devices (4-10 input variables)
indicate the following: 1) In 25 percent of cases
optimal tests were obtained. 2) In 70 percent of the
cases, the tests differed from the optimal ones by no
more than 25 percent. 3) In 5 percent of the cases, the
tests were close to the exhaustive number of input
sequences. 4) The computational complexity of the
proposed qubit method for synthesis the minimum test
for logical functionality from n variables is determined
by the estimate forming the time costs for taking the
qubit derivatives and the test minimization:

E = 2n+ 2n2 = 2n(n+1).
Thus, the method of test synthesis based on the

leverage qubit derivatives allows the generation of
input vectors detecting all single stuck-at-faults of the
input and internal lines. However, for the synthesis of
the minimum test, it is necessary to use the structure of
a digital device.

4. Conclusion
The innovation of the results is as follows:
1) The Hasse sequencer, focused on the parallel

solution of quasi-optimal search problems, in particular
to minimize the test, detecting single stuck-at-faults in
digital black-box functionality.

2) The method, algorithm and sequencer structure
for synthesis and minimization tests of black-box
functionality is proposed, using qubit derivative matrix
to find the quasi-optimum coverage. 3) Experiments
were carried out on the fragments of digital circuits,
which showed, the practical significance and high
performance of the proposed architecture and the
method of synthesis a quasi-minimal test for black-box
logical functionality. 4) Further research will be
directed to the creation a family of intelligent
algorithms for the test synthesis, simulation and fault
diagnosis leveraging the qubit coverage and derivatives
apparatus.

10. References

[1] Hiroshi I. and Masahito H. (2006) Quantum Computation
and Information. From Theory to Experiment. Springer.

[2] Hahanov V.I., Hahanova I.V., Litvinova E.I., and Guz
O.A. (2010) Design and verification of SoC. Verilog &
System Verilog. Kharkov. Novoe Slovo.

[3] Hahanov V.I., Litvinova E.I., Chumachenko S.V., and
Guz O.A. (2011) Logical associative processor. Electronic
modeling. J 1: 73-90.

[4] Hahanov V.I. Hahanova I.V., Guz O.A., and Abbas M.A.
(2012) Quantum models for data structures and computing.
In: TCSET Proceedings. Lvov. Slavske.

[5] V. Hahanov et al., "Qubit test synthesis of the
functionality," 2017 14th International Conference The
Experience of Designing and Application of CAD Systems in
Microelectronics (CADSM), Lviv, 2017, pp. 251-255.

